Bondarko's work on local Galois module theory

Part I: What he did

Kevin Keating
Department of Mathematics
University of Florida

May 21, 2018

Sources

Bondarko, M. V., Local Leopoldt's problem for rings of integers in abelian p-extensions of complete discrete valuation fields, Doc. Math. 5 (2000), 657-693.

Bondarko, M. V., Local Leopoldt's problem for ideals in totally ramified p-extensions of complete discrete valuation fields, Algebraic number theory and algebraic geometry, 27-57, Contemp. Math. 300, Amer. Math. Soc., Providence, RI, 2002.

Bondarko, M. V., The Leopoldt problem for totally ramified abelian extensions of complete discrete valuation fields (Russian), Algebra i Analiz 18 (2006), 99-129; translation in St. Petersburg Math. J. 18 (2007), 757-778.

Local Fields

Let K be a field which is complete with respect to a discrete valuation $v_{K}: K^{\times} \rightarrow \mathbb{Z}$, whose residue field \bar{K} is a perfect field of characteristic p. Also let

$$
\begin{aligned}
\mathcal{O}_{K} & =\left\{\alpha \in K: v_{K}(\alpha) \geq 0\right\} \\
& =\text { ring of integers of } K \\
\pi_{K} & =\text { uniformizer for } \mathcal{O}_{K}\left(\text { i. e., } v_{K}\left(\pi_{K}\right)=1\right) \\
\mathcal{M}_{K} & =\pi_{K} \mathcal{O}_{K} \\
& =\text { unique maximal ideal of } \mathcal{O}_{K}
\end{aligned}
$$

Let L / K be a finite totally ramified Galois extension of degree q, and set $G=\operatorname{Gal}(L / K)$.

Galois Modules

L is a module over the ring $K[G]$.
In fact, by the normal basis theorem, L is free of rank 1 over $K[G]$.
\mathcal{O}_{L} is a module over $\mathcal{O}_{K}[G]$.
If L / K is tamely ramified then \mathcal{O}_{L} is free of rank 1 over $\mathcal{O}_{K}[G]$.
However, if L / K has some wild ramification then \mathcal{O}_{L} is not free over $\mathcal{O}_{K}[G]$.

Associated Orders

Definition

Let \mathcal{M}_{L}^{i} be a (fractional) ideal of \mathcal{O}_{L}. The associated order of \mathcal{M}_{L}^{i} is

$$
\mathfrak{A}\left(\mathcal{M}_{L}^{i}\right)=\left\{\gamma \in K[G]: \gamma\left(\mathcal{M}_{L}^{i}\right) \subset \mathcal{M}_{L}^{i}\right\} .
$$

We have $\mathcal{O}_{K}[G] \subset \mathfrak{A}\left(\mathcal{M}_{L}^{i}\right)$, with $\mathcal{O}_{K}[G]=\mathfrak{A}\left(\mathcal{O}_{L}\right)$ if and only if L / K is tamely ramified. In particular, if L / K has wild ramification then

$$
\pi_{K}^{-1} T \in \mathfrak{A}\left(\mathcal{O}_{L}\right) \backslash \mathcal{O}_{K}[G],
$$

where $T=\sum_{\sigma \in G} \sigma$ is the trace element of $K[G]$.
\mathcal{M}_{L}^{i} is a module over $\mathfrak{A}\left(\mathcal{M}_{L}^{i}\right)$.
Leopoldt Problem: When is \mathcal{M}_{L}^{i} a free module over $\mathfrak{A}\left(\mathcal{M}_{L}^{i}\right)$?

K-linear Endomorphisms of L

Let $E n d_{K}(L)$ denote the K-vector space of K-linear endomorphisms of L.

Elements of $L[G]$ induce K-linear endomorphisms of L. By the linear independence of automorphisms of L we get an isomorphism of K-vector spaces

$$
L[G] \cong \operatorname{End}_{K}(L) .
$$

This becomes an isomorphism of K-algebras if we define multiplication on $L[G]$ so that

$$
a \sigma \cdot b \tau=a \sigma(b) \cdot \sigma \tau
$$

for $a, b \in L, \sigma, \tau \in G$.
The isomorphism above identifies $K[G]$ with a K-subalgebra of $\operatorname{End}_{\kappa}(L)$.

The Maps ϕ and ψ_{σ}

There is a K-linear map $\phi: L \otimes_{K} L \rightarrow L[G]$ defined by

$$
\phi(a \otimes b)=a T b=\sum_{\sigma \in G} a \sigma(b) \sigma .
$$

For $c \in L$ we get

$$
\phi(a \otimes b)(c)=\sum_{\sigma \in G} a \sigma(b c)=a \operatorname{Tr}_{L / K}(b c)
$$

Proposition

ϕ is an isomorphism of K-vector spaces.

For $\sigma \in G$ define $\psi_{\sigma}: L \otimes_{K} L \rightarrow L$ by $\psi_{\sigma}(a \otimes b)=a \sigma(b)$. Then ψ_{σ} is a K-algebra homomorphism, and for $\beta \in L \otimes_{K} L$ we have

$$
\phi(\beta)=\sum_{\sigma \in G} \psi_{\sigma}(\beta) \sigma
$$

Some Lattices in $\operatorname{End}_{K}(L)$

Let $I_{1}=\mathcal{M}_{L}^{a_{1}}$ and $I_{2}=\mathcal{M}_{L}^{a_{2}}$ be fractional ideals of \mathcal{O}_{L}. Define

$$
\begin{aligned}
\mathfrak{C}\left(I_{1}, I_{2}\right) & =\operatorname{Hom}_{K}\left(I_{1}, I_{2}\right) \\
\mathfrak{A}\left(I_{1}, I_{2}\right) & =\mathfrak{C}\left(I_{1}, I_{2}\right) \cap K[G] .
\end{aligned}
$$

Then $\mathfrak{A}\left(I_{1}, I_{1}\right)=\mathfrak{A}\left(I_{1}\right)$.
Every element of $\mathfrak{C}\left(I_{1}, I_{2}\right)$ extends uniquely to a K-endomorphism of L. Hence we may view $\mathfrak{C}\left(I_{1}, I_{2}\right)$ as an \mathcal{O}_{K}-submodule of $\operatorname{End}_{K}(L)$.

Let \mathfrak{D} denote the different of the extension L / K.

Proposition

$\phi\left(I_{2} \otimes \mathfrak{D}^{-1} I_{1}^{-1}\right)=\mathfrak{C}\left(I_{1}, I_{2}\right)$

Note that $\mathfrak{D}^{-1} I_{1}^{-1}=l_{1}^{*}$ is the dual of I_{1} with respect to the trace pairing for L / K.

The Smallest Shift Valuation

Definition

For $\gamma \in \operatorname{End}_{K}(L) \cong L[G]$ set

$$
\hat{v}_{L}(\gamma)=\min \left\{v_{L}(\gamma(x))-v_{L}(x): x \in L^{\times}\right\}
$$

(This is parallel to the definition of the norm of a linear operator.) For $n \in \mathbb{Z}$ we get \mathcal{O}_{K}-submodules of $\operatorname{End}_{K}(L)$ by setting

$$
\begin{aligned}
\mathfrak{C}_{n} & =\left\{\gamma \in \operatorname{End}_{K}(L): \hat{v}_{L}(\gamma) \geq n\right\} \\
& =\bigcap_{k \in \mathbb{Z}} \mathfrak{C}\left(\mathcal{M}_{L}^{k}, \mathcal{M}_{L}^{k+n}\right) \\
\mathfrak{A}_{n} & =\mathfrak{C}_{n} \cap K[G] .
\end{aligned}
$$

Describing \mathfrak{A}_{n} in Terms of ϕ

For $n \in \mathbb{Z}$ let X_{n} be the \mathcal{O}_{K}-submodule of $L \otimes_{K} L$ generated by all elements of the form $a \otimes b$, with $v_{L}(a)+v_{L}(b) \geq n$.

Write $\mathfrak{D}=\mathcal{M}_{L}^{d}$ and set $i_{0}=d-q+1$.
Theorem
Let $n \in \mathbb{Z}$. Then $\mathfrak{C}_{n}=\phi\left(X_{n-i_{0}}\right)$.

A Partial Order

Let H be the subgroup of $\mathbb{Z} \times \mathbb{Z}$ generated by the element $(q,-q)$.
For $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ write $[a, b]$ for the coset $(a, b)+H$.
We define a partial order on the quotient group $(\mathbb{Z} \times \mathbb{Z}) / H$ by $[a, b] \leq[c, d]$ if and only if there is $t \in \mathbb{Z}$ such that $a \leq c+t q$ and $b \leq d-t q$.
We sometimes represent $(\mathbb{Z} \times \mathbb{Z}) / H$ by the set

$$
\mathcal{F}=\{(a, b) \in \mathbb{Z} \times \mathbb{Z}: 0 \leq b<q\}
$$

of coset representatives.

An Example

Let $q=9$. Here is the set

$$
\{(c, d) \in \mathcal{F}:[-3,2] \leq[c, d]\} .
$$

Expansions in $L \otimes_{K} L$

Fix a uniformizer π_{L} for L, and let \mathcal{T} be the set of Teichmüller representatives of K.

Let $\beta \in L \otimes_{K} L$. Then there are unique $b_{j} \in L$ and $a_{i j} \in \mathcal{T}$ such that

$$
\begin{aligned}
\beta & =\sum_{j=0}^{q-1} b_{j} \otimes \pi_{L}^{j} \\
& =\sum_{(i, j) \in \mathcal{F}} a_{i j} \pi_{L}^{i} \otimes \pi_{L}^{j}
\end{aligned}
$$

Let

$$
R(\beta)=\left\{[i, j]:(i, j) \in \mathcal{F}, a_{i j} \neq 0\right\}
$$

Diagrams

Definition

Define the diagram of $\beta \in L \otimes_{K} L$ to be

$$
D(\beta)=\{[x, y] \in(\mathbb{Z} \times \mathbb{Z}) / H:[i, j] \leq[x, y] \text { for some }[i, j] \in R(\beta)\} .
$$

Proposition

$D(\beta)$ does not depend on the choice of uniformizer π_{L} for L.
Let $G(\beta)$ denote the set of minimal elements of $D(\beta)$. Then $G(\beta)$ is also the set of minimal elements of $R(\beta)$. Furthermore, we have

$$
D(\beta)=\{[x, y] \in(\mathbb{Z} \times \mathbb{Z}) / H:[i, j] \leq[x, y] \text { for some }[i, j] \in G(\beta)\} .
$$

Theorem

Let $\beta \in L \otimes_{K} L$ be such that $\gamma:=\phi(\beta) \in K[G]$. Let $[a, b] \in G(\beta)$. Then for all $y \in L$ with $v_{L}(y)=-b-i_{0}$ we have $v_{L}(\gamma(y))=a$.

An Example

Let $q=9$ and set

$$
\beta=\pi_{L}^{5} \otimes \pi_{L}+\pi_{L}^{3} \otimes \pi_{L}^{3}-\pi_{L}^{3} \otimes \pi_{L}^{5}-1 \otimes \pi_{L}^{7}+\pi_{L}^{-3} \otimes \pi_{L}^{6} .
$$

We get

$$
\begin{aligned}
& R(\beta)=\{[5,1],[3,3],[3,5],[0,7],[-3,6]\} \\
& G(\beta)=\{[5,1],[3,3],[-3,6]\} .
\end{aligned}
$$

The subset of \mathcal{F} corresponding to $D(\beta)$ is \ldots

Example Diagram

$$
q=9, \quad \beta=\pi_{L}^{5} \otimes \pi_{L}+\pi_{L}^{3} \otimes \pi_{L}^{3}-\pi_{L}^{3} \otimes \pi_{L}^{5}-1 \otimes \pi_{L}^{7}+\pi_{L}^{-3} \otimes \pi_{L}^{6}
$$

Diagonals

For $\beta \in L \otimes_{K} L$ with $\beta \neq 0$ define

$$
d(\beta)=\min \{i+j:[i, j] \in D(\beta)\}
$$

Define the (lower) diagonal of β to be

$$
N(\beta)=\{[i, j] \in D(\beta): i+j=d(\beta)\}
$$

Then $N(\beta) \subset G(\beta)$.
In the preceding example we have $d(\beta)=3$ and $N(\beta)=\{[-3,6]\}$.

Semistable Extensions

Definition

Say that the extension L / K is semistable if there is $\beta \in L \otimes_{K} L$ such that $\phi(\beta) \in K[G], p \nmid d(\beta)$, and $|N(\beta)|=2$.

As a lame example, let $K=\mathbb{Q}_{2}, L=\mathbb{Q}_{2}(\sqrt{3})$ and $G=\operatorname{Gal}(L / K)=\langle\sigma\rangle$. Set $\pi_{L}=\sqrt{3}-1$, so that $\pi_{L}^{2}+2 \pi_{L}-2=0$ and $\sigma\left(\pi_{L}\right)=-\pi_{L}-2$. Then $\beta=\pi_{L} \otimes 1+\left(1+\pi_{L}\right) \otimes \pi_{L}$ satisfies

$$
\begin{aligned}
\phi(\beta) & =2 \pi_{L}+\pi_{L}^{2}+\left(\pi_{L}+\left(1+\pi_{L}\right)\left(-2-\pi_{L}\right)\right) \sigma \\
& =2-4 \sigma \in \mathbb{Q}_{2}[G] \\
N(\beta) & =G(\beta)=\{[1,0],[0,1]\}
\end{aligned}
$$

Since $d(\beta)=1$ is not divisible by 2 we deduce that L / K is a semistable extension.

Diagram for a Semistable Extension

$$
\begin{gathered}
q=9, \quad \beta=a_{50} \pi_{L}^{5} \otimes 1+a_{43} \pi_{L}^{4} \otimes \pi_{L}^{3}+a_{24} \pi_{L}^{2} \otimes \pi_{L}^{4}+a_{-1,6} \pi_{L}^{-1} \otimes \pi_{L}^{6} \\
G(\beta)=R(\beta)=\{[5,0],[4,3],[2,4],[-1,6]\}, N(\beta)=\{[5,0],[-1,6]\}
\end{gathered}
$$

Smallest Shift Elements

Definition

Say that $y \in L$ is a smallest shift element for L / K if for every $\gamma \in K[G]$ with $\gamma \neq 0$ we have $\hat{v}_{L}(\gamma)=v_{L}(\gamma(y))-v_{L}(y)$.

Theorem

Assume that $q=[L: K]$ is a power of p, and that $\mathfrak{D} \not \subset q \mathcal{O}_{L}$. Then the following statements are equivalent:
(1) The extension L / K is semistable.
(2) There exists a smallest shift element y for L / K.
(0) Every $y \in L$ such that $v_{L}(y) \equiv-i_{0}(\bmod q)$ is a smallest shift element for L / K.

Properties of Semistable Extensions

Theorem
Let L / K be a semistable extension. Then
(1) $p \nmid i_{0}$.
(2) If b is a lower ramification break of L / K then $b \equiv-i_{0}(\bmod q)$.

Galois Modules and Semistable Extensions

Theorem

Let L / K be a semistable extension. Then for all $n \in \mathbb{Z}$ there is an isomorphism of $\mathcal{O}_{K}[G]$-modules $\mathfrak{A}_{n} \cong \mathcal{M}_{L}^{n-i_{0}}$.

Theorem

Let L / K be a semistable extension. Then $\mathfrak{A}\left(\mathcal{M}_{L}^{-i_{0}}\right)=\mathfrak{A}_{0}$.

Corollary

Let L / K be a semistable extension. Then $\mathcal{M}_{L}^{-i_{0}}$ is a free $\mathfrak{A}\left(\mathcal{M}_{L}^{-i_{0}}\right)$-module of rank 1 .

